If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+8x-49=0
a = 6; b = 8; c = -49;
Δ = b2-4ac
Δ = 82-4·6·(-49)
Δ = 1240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1240}=\sqrt{4*310}=\sqrt{4}*\sqrt{310}=2\sqrt{310}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{310}}{2*6}=\frac{-8-2\sqrt{310}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{310}}{2*6}=\frac{-8+2\sqrt{310}}{12} $
| 11x+4.82=37.82 | | -6(-2r-7)=114 | | 10.5y+203-4y=0 | | 2(6x-5=-58 | | t÷4-4=9 | | -10.5y=203-4y=0 | | 1/4x-8=-3/4x+4 | | {x|−9=x0-9=x0} | | a÷5+1=15 | | 27=(x+6)(x) | | (x+11)(x+11)=109 | | 7(5-8(-8x-4))=448x+259 | | 0.5n+60=1.3n | | 0.5+60=1.3n | | 6.4-5k=-8.6 | | 2.5m+12=19.5 | | 5x+7/9=8/9+5x | | 2.5(x+2)=-15 | | 24=3n-12 | | • f(-4)=f(3)=f(5)=-6 | | 8(x-3)-6=-86 | | 4y-4=-y+3 | | 6x-2.4=4.2x+8 | | 5n-22=4n+5 | | 2-1/3x=12 | | 19+2x+3x=180 | | x^2-72x+180=0 | | (3x+94)+(x+36)+(2x-4)=180 | | 4y-4=-4+3 | | 2x+16=2x/5x | | 2.45-4.1t=21.05 | | 8(x-3)-6=86 |